
Evaluating Programming
Languages and Tools in Studies

with Human Participants

Thomas LaToza

Motivation

• Evaluate the usability of a programming language
feature or tool for developers

• usually productivity effects

• Given a context, what is effect on developer
productivity

2

Challenges
• How many participants do I need?

• Is it ok to use students?

• What do I measure? How do I measure it?

• What’s an IRB?

• Should I train participants?

• What tasks should I pick?

3

4

5

Data on how software engineering community
conducts experiments w/ humans

• Systematic review of 1701 software engineering articles

• All papers published at ICSE, FSE, TSE, TOSEM
2001 - 2011

6

82%
1392

described
tool

63%
1065

empirical
eval

17%
289

0%
25%
50%
75%
100%

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

empirical
eval

w/ humans

% of papers w/ tools w/ empirical evals

0%
20%
40%
60%
80%

100%

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

experience report lab field interview survey

% of human evals by method

Controlled experiment
• Only way to argue causality - change in var x causes change in var y

• Manipulate independent variables 
 Creates “conditions” that are being compared  
 Can have >1, but # conditions usually exponential in # ind.
variables

• Measure dependent variables (a.k.a measures)  
 Quantitative variable you calculate from collected data  
 E.g., time, # questions, # steps, ...

• Randomly assign participants to condition  
 Ensure that participants only differ in condition  
 Not different in other confounding variables

• Test hypotheses 
 Change in independent variable causes dependent variable
change 
 e.g., t-test, ANOVA, other statistical techniques

7

Anatomy of controlled
experiment w/ humans

8

Terminology
• “Tool” — any intervention manipulating a software developer’s

work environment

• e.g., programming language, programming language
feature, software development environment feature, build
system tool, API design, documentation technique, …

• Data — what you collected in study

• Unit of analysis — individual item of data

• Population — all members that exist

• Construct — some property about member

• Measure — approximation of construct computed from data

9

Example — Study of shapes

10

ConstructsPopulation

Measure
Sample  
of population

Real world

Study

shape 
size 
filled / empty  
color

is blue?

size >10 or size < 10

(Some) types of validity
• Validity = should you believe a result

• Construct validity

• Does measure correspond to construct or something else?

• External validity

• Do results generalize from participants to population?

• Internal validity (experiments only)

• Are the differences between conditions caused only by
experimental manipulation and not other variables?
(confounds)  
 11

Example: Typed vs. untyped languages

12

Participants 26 undergrads

Setup

Task write a parser

new OO language 16 hr instructions

27 hrs

Conditions type system no type system

RESULTS
Developers with untyped version significantly faster

completing task to same quality level (unit tests).

S. Hanenberg. (2009). What is the impact of static type systems on
programming time? In the PLATEAU workshop, OOPSLA 09.

vs.
found errors at compile time errors detected at runtime

Example: Study validity
• Construct validity 

 Does measure correspond to construct or something
else?

• External validity 
 Do results generalize from participants to
population?

• Internal validity (experiments only) 
 Are the differences between conditions caused only
by experimental manipulation and not other variables?
(confounds)

• Other reasons you’re skeptical about results?

13

Good (not perfect) study designs
• Goals 

 Maximize validity - often requires more 
 more participants, data collected, measures 
 longer tasks  
 more realistic conditions

• Minimize cost - often requires 
 fewer participants, data collected, measures 
 shorter tasks 
 less realistic, easier to replicate conditions

• Studies are not proofs - results could always be invalid 
 don’t sample all developers / tasks / situations 
 measures imperfect

• Goal is to find results that are  
 interesting 
 relevant to research questions 
 valid enough your target audience believes them

14

Overview

15

Deciding who to recruit
• Inclusion criterion: attributes participants must have to be

included in study

• Goal: reflect characteristics of those that researchers believe
would benefit

• Example - Nimmer & Ernst (2002)

• Support those w/ out experience w/ related analysis tools

• Chose graduate students

• Developed items to assess (1) did not have familiarity w/ tool
(2) Java experience (3) experience writing code

16

Common inclusion criteria
• Experience w/ a programming language

• Self-estimation of expertise; time

• Experience w/ related technologies

• Important for learning new tool

• Industry experience

• Indicator of skills & knowledge; could also ask directly

• (Natural) language proficiency

17

Poor criteria: Paper authors
• 62% of studies evaluating a

tool involved tool’s authors
using the tool & reporting
personal experiences

• Tool designers far more
likely to use own tool
successfully than those new
to tool

• More likely to overlook
weaknesses of tool

18

Proportion of evaluations involving humans in
which authors were study participants

To use students or not to use students?
• 72% of 113 SE experiments 1993-2002 used students [Sjoberg

2005]

• 23% reported using students in studies from 2001 - 2011 (many
did not report if or if not)

• Students can be too inexperienced to be representative of tools
intended users; observer-expectancy effect

• But

• depends on task & necessary expertise

• professional masters students may have industry experience

• can minimize observer-expectancy effect
19

How many participants to
recruit?

• More participants —> more statistical power

• higher chance to observe actual differences

• power analysis — given assumptions about expected
effect size and variation, compute participants number

• Experiments recruited median 36 participants, median 18
per condition

• Some studies smaller

20

Recruiting participants

• Marketing problem: how to attract participants
meeting inclusion criteria

• Questions:

• Where do such participants pay attention?

• What incentives to offer for participation?

21

Sources of participants
• Students

• Class announcement, fliers, emailing lists

• Incentives: small compensation & intrinsic interest

• Software professionals

• Relationships w/ industry researchers

• Studies by interns at companies

• Partnerships or contracts with companies

• In-house university software teams

• Meetup developer groups, public mailing lists, FB groups

• CS Alumni mailing lists, LinkedIn groups
22

Remote participants
• Online labor markets focused on or including developers (e.g.,

MTurk, oDesk, TopCoder)

• Pros

• Can quickly recruit hundreds or thousands of participants

• Use their own space & tools; work at own time

• Cons

• May misreport levels of experience

• Might leave task temporarily; more extraneous variation

23

Remote participants - MTurk example

• Recruited participants from MTurk across 96 hours

• Used qualification test to screen for programming
expertise

• multiple choice question about program output

• Paid $5 for <= 30 mins

24

Participant numbers:

4776
completed
informed
consent

3699
took

qualification
test

999

qualified

777

completed
1 task

489

completed
all tasks

Overview

25

Informed consent
• Enables participants to decide to participate with a few page document

• Key elements

• Names & contact info for you and other experimenters

• Purpose of the study

• Brief (one or two sentence) high-level description of the types of work
participants will be asked to do

• Expected length of the study

• A statement of any possible benefits or compensation

• A statement of any possible risks or discomforts

• Overview of the data you will collect (thinkaloud, screencast, survey
questions, etc.)

• Clear statement on confidentiality of data (who will have access?)

26

27

IRB Approval
• US universities have an Institutional Review Board (IRB)

responsible for ensuring human subjects treated ethically

• Before conducting a human subjects study

• Must complete human subjects training (first time only)

• Submit an application to IRB for approval (2 - ??? weeks
approval time)

• During a study

• Must administer “informed consent” describing
procedures of study and any risks to participants

28

Collecting demographic
data

• Goal: understand expertise, background, tool
experience, …

• Interviews — potentially more comfortable

• Before or after tasks

• Surveys — more consistent, can be used to test
against inclusion criteria during recruiting

29

Assigning participants to an
experimental condition

• Random assignment

• distributes random variation in participant skills and
behavior across all conditions

• minimizes chance that observed difference is due to
participant differences

• Used with a between-subjects experiment

• Are alternative designs that can reduce number of
participants necessary to recruit

30

Within-subjects design

• All participants use all tools being compared one at a time across
several tasks

• e.g., participant uses tool in task 1 but not task 2

• Learning effect — doing first task may increase performance on
second task

• —> Counterbalancing — randomize order of task & on which task
participants use each tool

• Latin Square design
31

Interrupted time-series design

• Measure outcome variable before tool introduced,
after introduced, after removing tool

• Can see possible causal effects of tool

• Enables participants to articulate effects of tool

• Could be “trial run” of new tool in a field
deployment of tool to a company

32

Training participants
• Knowledge participants need includes

• how to use tools in the environment provided

• terminology & domain knowledge used in task

• design of programs they will work with during
task

• Can provide background and tutorial materials to
ensure participants have knowledge.

33

To train or not to train?
• Key study design question, creating assumptions about

context of use results generalize to

• Training

• Ensures participants are proficient and focused on the
task

• No training

• Generalizes directly to new users who don’t have training
materials, but risks study being dominated by learning

• Studies often choose to provide training materials for tool
34

Design of training materials
• Goal: teach required concepts quickly & effectively

• Possible approaches

• Background materials

• Video instructions

• Tutorial where participants complete example task w/ tool

• Cheat sheets

• Can also include assessment to ensure learning

• Can be helpful for experimenter to answer participant questions

35

Overview

36

Tasks
• Goal: design tasks that have coverage of work affected

by tool

• Key tradeoff: realism vs. control

• How are real, messy programming tasks distilled into
brief, accessible, actionable activities?

• More realism —> messier, fewer controls

• More control —> cleaner, less realism

• Tradeoff often takes the form of tradeoff between bigger
tasks vs. smaller tasks

37

Feature coverage

• Of all functionality and features of tool, which will
receive focus in tasks?

• More features —> more to learn, more variation in
performance, higher risk of undue negative results

• Fewer features —> less to learn, less ecological
validity, more likely to observe differences

38

Experimental setting
• Experiments can be conduct in lab or in

developer’s actual workspace

• Experiments most often conducted in lab (86%)

• Enables control over environment

• Can minimize distractions

• But less realism, as may have different computer,
software, … from participants’ normal setting

39

Task origin
• Found task — task from real project (15%)

• e.g., bug fix task from an OSS project

• More ecologically valid

• May not exist for new tools

• Can be hard to determine what feature usage found task will
lead to

• Synthetic task — designed task (85%)

• Can be easier to tailor for effective feature coverage

• Must compare synthetic task to real tasks

40

Task duration
• Unlimited time to work on a task

• Allow either participant or experimenter to determine when
task is complete

• Hard to find participants willing to work for longer time periods

• Fixed time limit

• More control over how participants allocate time across tasks

• Can introduce floor effect in time measures, where no one
can complete task in time

• Typical length of 1 - 2 hours

41

Measuring outcomes
• Wide range of possible measures

• Task completion, time on task, mistakes

• Failure detection, search effort

• Accuracy, precision, correctness, quality

• Program comprehension, confidence

• Most frequent: success on task, time on task, tool
usefulness

42

Measuring success on task

• Often multiple ways to succeed

• e.g., several ways to implement feature or fix bug

• What is close enough to be counted as success?

• Might be binary success measure

• Might be measure of quality of change

43

Determining when goal is reached
• Experimenter watches participant for success

• Requires consistency, which can be challenging

• Success is automatically measured (e.g., unit tests)

• Requires researcher to identify all goal states in advance,
which can be challenging

• Participants determine they believe they have succeeded

• Most ecologically valid

• Introduces variation, as participants may vary in
confidence they obtain before reporting they are done

44

Defining success to participants

• Need to unambiguously communicate goal to
participants

• When participants themselves determine, may ask
experimenter about what is success

• Experimenter can reiterate instructions from
beginning

• When experimenter determines

• Experimenter should respond “I unable to answer that
question”

45

Measuring time on task
• Need to define task start and task end & who determines when

task has finished

• Choice of task framing

• What is start

• When participant starts reading task — includes variation in time
spent reading

• When participants starts working

• What is end

• What happens if participant succeeds but does not realize it?

• What happens if they think they succeeded but failed?

46

Measuring usefulness
• Usefulness — does the tool provide functionality that satisfies a

user need or provides a benefit

• Not usability — ease of use for task

• Might ask developers

• Did they find the tool useful

• Would they consider using it in the future

• Technology Acceptance Model

• Validated instrument for measuring usefulness through a
questionnaire

47

Debriefing & compensation
• Explain to participant what study investigated

• Explain the correct solutions to tasks

• Instructions about information that should not be shared w/
others

• e.g., don’t share tasks with friends who might participate

• Get speculative feedback about tool

• Can use semi-structured interview to get perceptions of
tool

48

Piloting
• Most important step in ensuring useful results!

• (1) Run study on small (1 - 4) number of participants

• (2) Fix problems with study design 
 Was the tool tutorial sufficient? 
 Did tasks use your tool? Enough? 
 Did they understand your materials? 
 Did you collect the right data? 
 Are your measures correct? 
(3) Fix usability problems 
 Are developers doing the “real” task, or messing with tool? 
 Are users confused by terminology in tool? 
 Do supported commands match commands users expect?

• (4) Repeat 1, 2, and 3 until no more (serious) problems
49

Overview

50

Qualitative data

On the value of qualitative data
• Experiment may provide evidence that A is “better”

than B

• But always generalizability questions about why
and when

• Qualitative data offers possibility of explanation,
making it possible to explain why result occurred.

• Can use coding to convert qualitative data to
categorical data, which can be counted or
associated with time to create quantitative data

52

Collecting qualitative data
• Screencasts

• Record screen as participants do tasks

• Many video recorders (e.g., SnagIt)

• Offers insight into what participants did

• What was time consuming

• Permits quantitative analysis of steps & actions

• Can code more fine-grained time data

• Does not provide insight into why developers did what they
did

53

Collecting qualitative data
• Think-aloud

• Ask participants to verbalize what they are thinking
as they work

• Prompt participants when they stop talking for more
than a minute or two

• Offers insight into why participants are doing what
they are doing

• What barriers are preventing progress on task

54

Analyzing qualitative data
1. open coding - read through the text 
 look for interesting things relevant to research questions  
 add notes in the margin (or column of spreadsheet)  
 add “codes” naming what you saw 
 make up codes as you go, not systematic

2. axial coding - how are codes related to each other?  
 look for patterns: causality, ordering, alternatives

3. selective coding - from initial codes, select interesting ones  
 which codes found interesting things?  
 from initial examples, build definition on when they are applied  
 systematically reanalyze data and apply codes

4. second coder (optional) 
 2nd person independently applies codes from definitions  
 check for interrater reliability - if low, iterate defns & try again

55

Example

REACHER: Interactive, compact visualization of
control flow

57

 

Method	  
						12	developers																									15	minutes	to	answer	reachability	ques5on		x	6 
						 
						Eclipse	only	on	3	tasks										Eclipse	w/	REACHER	on	3	tasks	

Tasks	

					Based	on	developer	ques5ons	in	prior	observa5ons	of	developers.	

					Example:	

					When	a	new	view	is	created	in	jEdit.newView(View),	what	messages,	in		 
					what	order,	may	be	sent	on	the	EditBus	(EditBus.send())?	

Evaluation

58

Does	REACHER	enable	developers	to	answer	reachability	
ques5ons	faster	or	more	successfully?

(order	counterbalanced)

Developers	with	REACHER	
were	5.6	5mes	more	
successful	than	those	
working	with	Eclipse	only.	

59

Task	5me	includes	only	par5cipants	that	succeeded.	

(not	enough	successful	to	
compare	5me)	

Results

REACHER helped developers stay oriented

60

When	not	using	REACHER,	par5cipants	oQen	reported	being	lost	and	confused.

Par5cipants	with	REACHER	used	it	to	jump	between	
methods.

“Where	am	I?	I’m	so	lost.”	
“These	call	stacks	are	horrible.”	
“There	was	a	 call	 to	 it	here	 somewhere,	
but	I	don’t	remember	the	path.”	
“I’m	just	too	lost.”

“It	seems	pretty	cool	 if	you	can	navigate	
your	way	around	a	complex	graph.”

“I	like	it	a	lot.	It	seems	like	an	easy	way	to	navigate	the	code.	And	the	view	
maps	to	more	of	how	I	think	of	the	call	hierarchy.”	
“Reacher	was	my	hero.	…	It’s	a	lot	more	fun	to	use	and	look	at.”	
“You	don’t	have	to	think	as	much.”

Par5cipants	reported	that	they	liked	working	with	REACHER.

Conclusions
• Controlled experiments w/ humans can demonstrate

causal relationship between tool & productivity
effects of tool

• But… observed in context where study conducted

• Key role for more research to understand
representativeness of context

• High value in qualitative understanding of
productivity effects to help bridge this gulf

61

Resources
• Andrew J. Ko, Thomas D. LaToza, and Margaret M. Burnett. (2015)

A practical guide to controlled experiments of software engineering
tools with human participants. Empirical Software Engineering, 20
(1), 110-141.

• Robert Rosenthal & Ralph Rosnow. (2007). Essentials of Behavioral
Research: Methods and Data Analysis. McGraw-Hill.

• Forrest Shull, Janice Singer, Dag I.K. Sjoberg (eds). (2008). Guide to
Advanced Empirical Software Engineering. Springer-Verlag, London.

• D. I. K. Sjoeberg, J. E. Hannay, O. Hansen, et al. (03 September
2005). A survey of controlled experiments in software engineering.
IEEE Transactions on Software Engineering, Vol. 31, No. 9. pp.
733-753.

62

