
Evaluating Programming 
Languages and Tools in Studies 

with Human Participants

Thomas LaToza



Motivation

• Evaluate the usability of a programming language 
feature or tool for developers 

• usually productivity effects 

• Given a context, what is effect on developer 
productivity
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Challenges
• How many participants do I need? 

• Is it ok to use students? 

• What do I measure? How do I measure it? 

• What’s an IRB? 

• Should I train participants? 

• What tasks should I pick?
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Data on how software engineering community 
conducts experiments w/ humans

• Systematic review of 1701 software engineering articles 

• All papers published at ICSE, FSE, TSE, TOSEM 
2001 - 2011
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Controlled experiment
• Only way to argue causality - change in var x causes change in var y 

• Manipulate independent variables 
     Creates “conditions” that are being compared  
     Can have >1, but # conditions usually exponential in # ind. 
variables 

• Measure dependent variables (a.k.a measures)  
     Quantitative variable you calculate from collected data  
     E.g., time, # questions, # steps, ... 

• Randomly assign participants to condition  
      Ensure that participants only differ in condition  
      Not different in other confounding variables 

• Test hypotheses 
     Change in independent variable causes dependent variable 
change 
     e.g., t-test, ANOVA, other statistical techniques         
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Anatomy of controlled 
experiment w/ humans
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Terminology
• “Tool” — any intervention manipulating a software developer’s 

work environment 

• e.g., programming language, programming language 
feature, software development environment feature, build 
system tool, API design, documentation technique, … 

• Data — what you collected in study 

• Unit of analysis — individual item of data 

• Population — all members that exist 

• Construct — some property about member 

• Measure — approximation of construct computed from data
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Example — Study of shapes
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(Some) types of validity
• Validity = should you believe a result 

• Construct validity 

• Does measure correspond to construct or something else? 

• External validity 

• Do results generalize from participants to population? 

• Internal validity (experiments only) 

• Are the differences between conditions caused only by 
experimental manipulation and not other variables? 
(confounds)  
        11



Example: Typed vs. untyped languages
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Participants 26 undergrads

Setup

Task write a parser

new OO language 16 hr instructions

27 hrs

Conditions type system no type system

RESULTS
Developers with untyped version significantly faster 

completing task to same quality level (unit tests).

S. Hanenberg. (2009). What is the impact of static type systems on 
programming time? In the PLATEAU workshop, OOPSLA 09.

vs.
found errors at compile time errors detected at runtime



Example: Study validity
• Construct validity 

       Does measure correspond to construct or something 
else? 

• External validity 
       Do results generalize from participants to 
population? 

• Internal validity (experiments only) 
       Are the differences between conditions caused only 
by experimental manipulation and not other variables? 
(confounds) 

• Other reasons you’re skeptical about results?

13



Good (not perfect) study designs
• Goals 

       Maximize validity - often requires more 
            more participants, data collected, measures 
            longer tasks  
            more realistic conditions 

•        Minimize cost - often requires 
            fewer participants, data collected, measures 
            shorter tasks 
            less realistic, easier to replicate conditions 

• Studies are not proofs - results could always be invalid 
       don’t sample all developers / tasks / situations 
       measures imperfect 

• Goal is to find results that are  
       interesting 
       relevant to research questions 
       valid enough your target audience believes them
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Overview
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Deciding who to recruit
• Inclusion criterion: attributes participants must have to be 

included in study 

• Goal: reflect characteristics of those that researchers believe 
would benefit  

• Example - Nimmer & Ernst (2002) 

• Support those w/ out experience w/ related analysis tools 

• Chose graduate students 

• Developed items to assess (1) did not have familiarity w/ tool 
(2) Java experience (3) experience writing code
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Common inclusion criteria
• Experience w/ a programming language 

• Self-estimation of expertise; time 

• Experience w/ related technologies 

• Important for learning new tool 

• Industry experience

• Indicator of skills & knowledge; could also ask directly 

• (Natural) language proficiency
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Poor criteria: Paper authors
• 62% of studies evaluating a 

tool involved tool’s authors 
using the tool & reporting 
personal experiences 

• Tool designers far more 
likely to use own tool 
successfully than those new 
to tool 

• More likely to overlook 
weaknesses of tool
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Proportion of evaluations involving humans in 
which authors were study participants



To use students or not to use students?
• 72% of 113 SE experiments 1993-2002 used students [Sjoberg 

2005] 

• 23% reported using students in studies from 2001 - 2011 (many 
did not report if or if not) 

• Students can be too inexperienced to be representative of tools 
intended users; observer-expectancy effect 

• But 

• depends on task & necessary expertise 

• professional masters students may have industry experience 

• can minimize observer-expectancy effect
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How many participants to 
recruit?

• More participants —> more statistical power 

• higher chance to observe actual differences 

• power analysis — given assumptions about expected 
effect size and variation, compute participants number 

• Experiments recruited median 36 participants, median 18 
per condition 

• Some studies smaller
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Recruiting participants

• Marketing problem: how to attract participants 
meeting inclusion criteria 

• Questions: 

• Where do such participants pay attention? 

• What incentives to offer for participation?
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Sources of participants
• Students 

• Class announcement, fliers, emailing lists 

• Incentives: small compensation & intrinsic interest 

• Software professionals 

• Relationships w/ industry researchers 

• Studies by interns at companies 

• Partnerships or contracts with companies 

• In-house university software teams 

• Meetup developer groups, public mailing lists, FB groups 

• CS Alumni mailing lists, LinkedIn groups
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Remote participants
• Online labor markets focused on or including developers (e.g., 

MTurk, oDesk, TopCoder) 

• Pros 

• Can quickly recruit hundreds or thousands of participants 

• Use their own space & tools; work at own time 

• Cons 

• May misreport levels of experience 

• Might leave task temporarily; more extraneous variation
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Remote participants - MTurk example

• Recruited participants from MTurk across 96 hours 

• Used qualification test to screen for programming 
expertise 

• multiple choice question about program output 

• Paid $5 for <= 30 mins
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Overview
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Informed consent
• Enables participants to decide to participate with a few page document 

• Key elements 

• Names & contact info for you and other experimenters 

• Purpose of the study 

• Brief (one or two sentence) high-level description of the types of work 
participants will be asked to do 

• Expected length of the study 

• A statement of any possible benefits or compensation 

• A statement of any possible risks or discomforts 

• Overview of the data you will collect (thinkaloud, screencast, survey 
questions, etc.) 

• Clear statement on confidentiality of data (who will have access?)
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IRB Approval
• US universities have an Institutional Review Board (IRB) 

responsible for ensuring human subjects treated ethically 

• Before conducting a human subjects study 

• Must complete human subjects training (first time only) 

• Submit an application to IRB for approval (2 - ??? weeks 
approval time) 

• During a study 

• Must administer “informed consent” describing 
procedures of study and any risks to participants
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Collecting demographic 
data

• Goal: understand expertise, background, tool 
experience, … 

• Interviews — potentially more comfortable 

• Before or after tasks 

• Surveys — more consistent, can be used to test 
against inclusion criteria during recruiting
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Assigning participants to an 
experimental condition

• Random assignment 

• distributes random variation in participant skills and 
behavior across all conditions 

• minimizes chance that observed difference is due to 
participant differences 

• Used with a between-subjects experiment 

• Are alternative designs that can reduce number of 
participants necessary to recruit
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Within-subjects design

• All participants use all tools being compared one at a time across 
several tasks 

• e.g., participant uses tool in task 1 but not task 2 

• Learning effect — doing first task may increase performance on 
second task 

• —> Counterbalancing — randomize order of task & on which task 
participants use each tool  

• Latin Square design
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Interrupted time-series design

• Measure outcome variable before tool introduced, 
after introduced, after removing tool 

• Can see possible causal effects of tool 

• Enables participants to articulate effects of tool   

• Could be “trial run” of new tool in a field 
deployment of tool to a company
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Training participants
• Knowledge participants need includes 

• how to use tools in the environment provided 

• terminology & domain knowledge used in task 

• design of programs they will work with during 
task 

• Can provide background and tutorial materials to 
ensure participants have knowledge.
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To train or not to train?
• Key study design question, creating assumptions about 

context of use results generalize to 

• Training 

• Ensures participants are proficient and focused on the 
task 

• No training 

• Generalizes directly to new users who don’t have training 
materials, but risks study being dominated by learning 

• Studies often choose to provide training materials for tool
34



Design of training materials
• Goal: teach required concepts quickly & effectively 

• Possible approaches 

• Background materials 

• Video instructions 

• Tutorial where participants complete example task w/ tool 

• Cheat sheets 

• Can also include assessment to ensure learning 

• Can be helpful for experimenter to answer participant questions
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Overview
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Tasks
• Goal: design tasks that have coverage of work affected 

by tool 

• Key tradeoff: realism vs. control 

• How are real, messy programming tasks distilled into 
brief, accessible, actionable activities? 

• More realism —> messier, fewer controls 

• More control —> cleaner, less realism 

• Tradeoff often takes the form of tradeoff between bigger 
tasks vs. smaller tasks
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Feature coverage

• Of all functionality and features of tool, which will 
receive focus in tasks? 

• More features —> more to learn, more variation in 
performance, higher risk of undue negative results 

• Fewer features —> less to learn, less ecological 
validity, more likely to observe differences
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Experimental setting
• Experiments can be conduct in lab or in 

developer’s actual workspace 

• Experiments most often conducted in lab (86%) 

• Enables control over environment 

• Can minimize distractions 

• But less realism, as may have different computer, 
software, … from participants’ normal setting
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Task origin
• Found task — task from real project (15%) 

• e.g., bug fix task from an OSS project 

• More ecologically valid 

• May not exist for new tools 

• Can be hard to determine what feature usage found task will 
lead to 

• Synthetic task — designed task (85%) 

• Can be easier to tailor for effective feature coverage 

• Must compare synthetic task to real tasks
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Task duration
• Unlimited time to work on a task 

• Allow either participant or experimenter to determine when 
task is complete 

• Hard to find participants willing to work for longer time periods 

• Fixed time limit 

• More control over how participants allocate time across tasks 

• Can introduce floor effect in time measures, where no one 
can complete task in time 

• Typical length of 1 - 2 hours
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Measuring outcomes
• Wide range of possible measures 

• Task completion, time on task, mistakes 

• Failure detection, search effort 

• Accuracy, precision, correctness, quality 

• Program comprehension, confidence 

• Most frequent: success on task, time on task, tool 
usefulness
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Measuring success on task

• Often multiple ways to succeed 

• e.g., several ways to implement feature or fix bug 

• What is close enough to be counted as success? 

• Might be binary success measure 

• Might be measure of quality of change
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Determining when goal is reached
• Experimenter watches participant for success 

• Requires consistency, which can be challenging 

• Success is automatically measured (e.g., unit tests) 

• Requires researcher to identify all goal states in advance, 
which can be challenging 

• Participants determine they believe they have succeeded 

• Most ecologically valid 

• Introduces variation, as participants may vary in 
confidence they obtain before reporting they are done
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Defining success to participants

• Need to unambiguously communicate goal to 
participants 

• When participants themselves determine, may ask 
experimenter about what is success 

• Experimenter can reiterate instructions from 
beginning 

• When experimenter determines 

• Experimenter should respond “I unable to answer that 
question”
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Measuring time on task
• Need to define task start and task end & who determines when 

task has finished 

• Choice of task framing 

• What is start 

• When participant starts reading task — includes variation in time 
spent reading 

• When participants starts working 

• What is end 

• What happens if participant succeeds but does not realize it? 

• What happens if they think they succeeded but failed?
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Measuring usefulness
• Usefulness — does the tool provide functionality that satisfies a 

user need or provides a benefit 

• Not usability — ease of use for task 

• Might ask developers 

• Did they find the tool useful 

• Would they consider using it in the future 

• Technology Acceptance Model 

• Validated instrument for measuring usefulness through a 
questionnaire 
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Debriefing & compensation
• Explain to participant what study investigated 

• Explain the correct solutions to tasks 

• Instructions about information that should not be shared w/ 
others  

• e.g., don’t share tasks with friends who might participate 

• Get speculative feedback about tool 

• Can use semi-structured interview to get perceptions of 
tool
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Piloting
• Most important step in ensuring useful results! 

• (1) Run study on small (1 - 4) number of participants 

• (2) Fix problems with study design 
      Was the tool tutorial sufficient? 
      Did tasks use your tool? Enough? 
      Did they understand your materials? 
      Did you collect the right data? 
      Are your measures correct? 
(3) Fix usability problems 
      Are developers doing the “real” task, or messing with tool? 
      Are users confused by terminology in tool? 
      Do supported commands match commands users expect? 

• (4) Repeat 1, 2, and 3 until no more (serious) problems
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Qualitative data



On the value of qualitative data
• Experiment may provide evidence that A is “better” 

than B 

• But always generalizability questions about why 
and when

• Qualitative data offers possibility of explanation, 
making it possible to explain why result occurred.  

• Can use coding to convert qualitative data to 
categorical data, which can be counted or 
associated with time to create quantitative data
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Collecting qualitative data
• Screencasts 

• Record screen as participants do tasks 

• Many video recorders (e.g., SnagIt) 

• Offers insight into what participants did 

• What was time consuming 

• Permits quantitative analysis of steps & actions 

• Can code more fine-grained time data 

• Does not provide insight into why developers did what they 
did
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Collecting qualitative data
• Think-aloud 

• Ask participants to verbalize what they are thinking 
as they work 

• Prompt participants when they stop talking for more 
than a minute or two 

• Offers insight into why participants are doing what 
they are doing 

• What barriers are preventing progress on task
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Analyzing qualitative data
1. open coding - read through the text 
             look for interesting things relevant to research questions  
             add notes in the margin (or column of spreadsheet)  
             add “codes” naming what you saw 
             make up codes as you go, not systematic 

2. axial coding - how are codes related to each other?  
            look for patterns: causality, ordering, alternatives 

3. selective coding - from initial codes, select interesting ones  
            which codes found interesting things?  
            from initial examples, build definition on when they are applied  
            systematically reanalyze data and apply codes 

4. second coder (optional) 
            2nd person independently applies codes from definitions  
            check for interrater reliability - if low, iterate defns & try again
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Example



REACHER: Interactive, compact visualization of 
control flow
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Method	  
						12	developers																									15	minutes	to	answer	reachability	ques5on		x	6 
						 
						Eclipse	only	on	3	tasks										Eclipse	w/	REACHER	on	3	tasks	

Tasks	

					Based	on	developer	ques5ons	in	prior	observa5ons	of	developers.	

					Example:	

					When	a	new	view	is	created	in	jEdit.newView(View),	what	messages,	in		 
					what	order,	may	be	sent	on	the	EditBus	(EditBus.send())?	

Evaluation
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Does	REACHER	enable	developers	to	answer	reachability	
ques5ons	faster	or	more	successfully?

(order	counterbalanced)



Developers	with	REACHER	
were	5.6	5mes	more	
successful	than	those	
working	with	Eclipse	only.	
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Task	5me	includes	only	par5cipants	that	succeeded.	

(not	enough	successful	to	
compare	5me)	

Results



REACHER helped developers stay oriented 
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When	not	using	REACHER,	par5cipants	oQen	reported	being	lost	and	confused.

Par5cipants	with	REACHER	used	it	to	jump	between	
methods.

“Where	am	I?	I’m	so	lost.”	
“These	call	stacks	are	horrible.”	
“There	was	a	 call	 to	 it	here	 somewhere,	
but	I	don’t	remember	the	path.”	
“I’m	just	too	lost.”

“It	seems	pretty	cool	 if	you	can	navigate	
your	way	around	a	complex	graph.”

“I	like	it	a	lot.	It	seems	like	an	easy	way	to	navigate	the	code.	And	the	view	
maps	to	more	of	how	I	think	of	the	call	hierarchy.”	
“Reacher	was	my	hero.	…	It’s	a	lot	more	fun	to	use	and	look	at.”	
“You	don’t	have	to	think	as	much.”

Par5cipants	reported	that	they	liked	working	with	REACHER.



Conclusions
• Controlled experiments w/ humans can demonstrate 

causal relationship between tool & productivity 
effects of tool 

• But… observed in context where study conducted 

• Key role for more research to understand 
representativeness of context 

• High value in qualitative understanding of 
productivity effects to help bridge this gulf 
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